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1 Abstract

Global Symmetries are inconsistent with Quantum Gravity. Most global symmetries are
broken/gauged away at lower energies . These kind of symmetries, even though are derived

well out of Quantum Field Theories and General Relativity, it undergoes spontaneous
symmetry breaking at low energy levels and remain lacking at unification. Spontaneous
Symmetry Breaking(SSB) gives rise to Goldstone modes which signals the presence of
massless excitations. A great example of SSB is the Higgs Field. The problem has been
approached from a few different perspectives- namely - global symmetries on the string

worldsheet, the consequences of symmetry breaking that happens on a conserved Noether’s
charge and how divergences occur when the vacuum state does not remain invariant and
finally a topological perspective to how gauge symmetry is broken and how it leads to the

rise of both broken and unbroken generators and mass terms.
Major focus has been devoted towards understanding how a non-triviality approach in the
context of conserved Noether current as well as a Holonomy group can give us deep insight
on how divergences lead to inconsistencies(this is very apparent in case of Black Holes). It
also provides information as to how compactification of higher dimensional gauge group

leads to the breakdown of gauge symmetry.
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2 Basic Introduction for Symmetries and Gauge theory

2.1 Symmetries and Gauge theory, an overview

Considering symmetries , in quantum field theory there are two kinds of symmetry, local
symmetry and global symmetry.

A global symmetry is a transformation that acts uniformly on all points in spacetime.
Mathematically, a global symmetry transformation is represented by an operator U .
U is an unitary operator that commutes with the field operators of the theory. For a scalar
field theory, a global symmetry transformation can be expressed as:
ψ(x) → ψ

′
(x) = Uψ(x)ϕ(x) where ϕ(x) is the field operator at spacetime point x , and U is

the global symmetry operator. Global symmetries lead to conservation laws through
Noether’s theorem which states that for every symmetry there is a conserved quantity,
whether it be momentum, angular momentum or energy.

For example, a global U(1) symmetry leads to the conservation of electric charge in QED.

A local symmetry, also known as gauge symmetry, is a transformation that varies from
point to point in spacetime. In gauge theories, such as Quantum Electrodynamics (QED)
and Quantum Chromodynamics (QCD), local symmetries are associated with gauge fields
and gauge bosons. Mathematically, a local symmetry transformation is represented by a
gauge transformation

U(x) that depends on spacetime coordinates: ψ(x) → ψ
′
(x) = U(x)ψ(x)

Here, ψ(x) represents the field operator of the fermion field, and

U(x) is the gauge transformation. Gauge symmetries introduce redundancy in the
description of the theory, which manifests as gauge degrees of freedom. Gauge theories are
constructed to be invariant under local gauge transformations, leading to the emergence of
gauge fields and ensuring that physical observables are independent of the choice of gauge.

2.2 Gauge Theory , an overview

The gauge principle is a fundamental concept in theoretical physics that states that the
laws of physics should be invariant under local transformations of a certain group. In the
context of gauge theories, such as electromagnetism and the weak and strong nuclear forces,
the gauge principle underlies the symmetries and interactions of elementary particles.
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Let’s consider a complex scalar field ψ(x) as an example. Under a gauge transformation,
the field ψ(x) undergoes a local phase transformation:ψ(x) → ψ′(x) = eiα(x)ψ(x). Here,
α(x) is an arbitrary real-valued function of spacetime x.
The gauge principle demands that the physical predictions of the theory remain unchanged
under such local gauge transformations. Mathematically, this can be expressed as:
L(ψ, ∂µψ,Aµ) = L(ψ′, ∂µψ

′, Aµ) where the gauge field Aµ is representing the interaction.
To ensure gauge invariance, we introduce a gauge field Aµ(x), that transforms under gauge
transformations such that the gauge-invariant derivative is preserved. This is done by
replacing ordinary derivatives with covariant derivatives:

Dµ = ∂µ − iqAµ

where q is a coupling constant associated with the interaction.
Under a gauge transformation, the gauge field Aµ can be transformed under an Unitary
transformation, which gives us the covariant derivative as,

Dµψ(x) = dµψ(x)− iqAµψ(x)

Gauge theory ensures the consistency and invariance of physical laws under local
transformations, leading to the introduction of gauge fields and the covariant derivatives
that preserve gauge invariance. The gauge principle is associated with a gauge symmetry
group, such as U(1) for electromagnetism or SU(2) for the weak force. The choice of gauge
group depends on the specific theory being considered.

2.3 Gauge Symmetry

Now, to ensure gauge invariance, the electromagnetic potential Aµ needs to transform
under gauge transformations. It transforms as:

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µΛ(x)

for a function Λ(x), we will ask only that x dies suitably quickly at spatial infinity . We
call this a gauge symmetry. The field strength remains locally invariant. ψ(x) = eiα(x)ψ(x)
which remains phase invariant under α(x) rotations.

So what are we to make of this? We have a theory with an infinite number of symmetries,
one for each function x. Previously we only encountered symmetries which act the same at
all points in spacetime. Noether’s theorem told us that these symmetries give rise to
conservation laws. Do we now have an infinite number of conservation laws? . The answer
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is no! Gauge symmetries have a very different interpretation than the global symmetries
that we make use of in Noether’s theorem. While the latter take a physical state to another
physical state with the same properties, the gauge symmetry is to be viewed as a
redundancy in our description. That is, two states related by a gauge symmetry are to be
identified: they are the same physical state.

As we get deepen our investigation into gauge and global symmetries, we are going to draw
analogies from different theories and contexts. The motivation as mentioned in the
beginning , is to give a symmetry treatment to Quantum Gravity. A fundamental question
which needs exploration with regards to Quantum Gravity is why are global symmetries
inconsistent with it, specifically when the theory of General Relativity and QFTs derive
well defined consistencies . Let’s begin.

3 Global Symmetries on the string worldsheet

The main question here is - Does global symmetries apply everywhere in spacetime ? YES.
Then what happens in Quantum Gravity. ?

The most mathematically consistent theory which we have right now, when it comes to the
unification of both Quantum mechanics and General Relativity is string theory. Gravity, as
described by Einstein’s field equations is a consequence of string theory. If we quantize a
string in 11 dimensions, Einstein’s field equations comes out of it as a consequence. In
string theory, most global symmetries are gauged at lower energies. How exactly does it
happen ?. We will see now.

The idea that any theory of quantum gravity cannot have global symmetries has a long
history [1].
The lack of such ordinary global continuous symmetries is known to be satisfied in all
descriptions of quantum gravity. It was shown in the paper [2], to be satisfied in
perturbative string theory - global symmetries on the string world-sheet lead to gauge
symmetries in spacetime, and there is no way to have global symmetries in spacetime.

Let’s look at it mathematically,

from the Polyakov Action on the worldsheet, [3]

S = − 1

4πα′

∫
∂2σ

√
−ggαβ∂αXµ∂βX

νηµν

where g = det(gαβ) , is the determinant of the metric tensor, gαβ is the world-sheet metric.
The world-sheet metric can also be expressed as:- gαβ = 2f(σ)∂αX.∂βX
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The equation of motion for Xµ , which is a bunch of scalar fields X , coupled to 2d gravity
will be:-

∂α(
√
−ggαβ∂βXµ) = 0

The Polyakov action still has the two symmetries of the Nambu-Goto action. -
Poincare Invariance.
- Reparameterization invariance.
1) Poincare Invariance:- This is a global symmetry on the worldsheet.

Xµ → Λµ
νX

ν + cµ

2) Reparameterization invariance:- also known as diffeomorphisms. This is a gauge
symmetry on the worldsheet. The fields Xµ transform as worldsheet scalars, while gαβ
transforms in the manner appropriate for a 2d metric.1

Along with these symmetries, there is a new kind of symmetry called Weyl invariance.

Weyl invariance:- Under this transformation of the scalar field Xσ , the metric transforms
as equation (1)

gαβ(σ) = Ω2(σ).gαβ(σ) (1)

Or, infinitesimally, we can also write, Ω2(σ) = e2ϕ for small ϕ such that,

δgαβ(σ) = 2ϕ(σ)gαβ(σ)

It is simple to see that the Polyakov action is invariant under this transformation.
This means that two metrics which are related by a Weyl transformation as given in
equation (1) are to be considered as the same physical state.

So, one component for poincare invariance and two components for Reparameterization
invariance. So total, three components for the world-sheet metric gαβ. This means that we
expect to be able to set any two of the metric components to a value of our choosing. We
will choose to make the metric locally conformally flat.

1*Note:- Although, if we encounter a dynamical metric, reparameterization invariance wouldn’t lead to the diffeomorphisms

which lead to gauge redundancy, we need an invariant operator which allows us to integrate over the whole wordsheet . These

are called vertex operators.
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3.1 Fixing a Gauge

We can use,

gαβ = e2ϕ.ηαβ (2)

to make the metric conformally flat. Choosing a metric of this form is called conformal
gauge., where ϕ(σ, τ) is some function on the world-sheet. This is equation (2).

We have only used reparameterization invariance to get to equation (2). We still have Weyl
transformations to play with. Clearly, we can use these to remove the last independent
component of the metric and set ϕ = 0 such that,

gαβ = ηαβ

We end up with the flat metric on the worldsheet in Minkowski coordinates.

As mentioned in this case, the metric has three independent components [4] namely,

gαβ =

(
g00 g01
g10 g11

)
where, g10 = g11

Reparametrization invariance allows us to choose two of the components ofg , so that only
one independent component remains. But this remaining component can be gauged away
by using the invariance of the action under Weyl rescalings.

So in the case of the string there is sufficient symmetry to gauge fix gαβ completely.
Therefore, the resultant metric can be chosen as, so as to end up with a flat worldsheet.

gαβ = ηαβ

(
−1 0
0 1

)

3.2 BRST Operations

After Gauge fixing, we are left with the gauge redundancy and these redundancies need to
be handled carefully when we talk about the symmetries. This is where Faddeev- poppov
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ghosts come in, Ghosts in the string worldsheet arises as a consequence of gauge-fixing the
worldsheet diffeomorphism. [See Appendix A]

To deal with these kinds of Gauge redundancies, we introduce BRST quantization. On a
very basic level, BRST is an approach to performing anomaly free perturbative calculations
in a non-abelian Gauge theory. Its significance is for rigorous canonical quantization of
Yang-Mills theory.

The BRST charge for a closed string, in the context of string theory, is a crucial operator
used for quantizing the theory and identifying physical states. It’s a combination of
left-moving and right-moving BRST charges and is nilpotent, meaning its square is zero.
Physical states are defined as those that are annihilated by this charge. [5]

The BRST charge, QBRST acts on both matter and ghost fields. As we mentioned, it will
satisfy,

- Q2 = 0 , nilpotent

- Physical states must be invariant under BRST transformations, meaning they are
annihilated by the BRST charge, QBRST = |ψ⟩ = 0 , closed. 2

- |ψ⟩ ≈ |ψ⟩+QBRST |X ⟩ (exact)

This defines the BRST cohomology, which picks out the physical states of the string (i.e.,
those that survive gauge fixing and are unitary).

Now, if you recall from the previous overview section of symmetries and gauge theory, you
will see that the global symmetries give rise to Noether currents and their associated
conserved charges. Hence, the worldsheet should definitely have conserved current. The
continuity equation can be checked by ,

∂αJ
α
µν = 0

This corresponds to a worldsheet global symmetry (e.g. SU(N), SO(N), etc.).

3.3 Vertex Operators

The BRST cohomology describes the physical states of the string, but there are still
constraints on the physical state |ψ⟩ described by Virasoro algebra.[6] Sometimes , in order

2BRST invariant operators that connects both open and close strings
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to handle certain issues like singularities in Conformal Field theory, a normal ordering of
operators are required . This is done to define operator products consistently.

In our case, there are ambiguities that arise from the constraints on the physical state.
Hence, we need to fix the normal ordering of ambiguities. These ambiguities are usually
represented by the conformal weight c, c˜ representing both left and right moving sectors in
CFT[two independent sets of degrees of freedom that arise when dealing with
two-dimensional spacetime]. How do we do this ?

A simple way is to first replace the states with operator insertions on the worldsheet using
the state operator map: |ψ⟩ → O. [3]

But we have a further requirement on the operators O: gauge invariance.

There are two gauge symmetries as mentioned before: reparameterization invariance and
Weyl symmetry. Both restrict the possible states.

Let’s start by considering reparameterization invariance. in a theory with a dynamical
metric, this does not give rise to a diffeomorphism invariant operator. To make an object
that is invariant under reparameterizations of the worldsheet coordinates, we should
integrate over the whole worldsheet. Our operator insertions (in conformal gauge) are
therefore of the form,

V ∼
∫
∂2zO

Here the ∼ sign reflects an overall normalization constant. Integrating over the worldsheet
takes care of diffeomorphisms. But what about Weyl symmetries? The measure ∂2z has
weight (-1, -1) under rescaling.

From here, we can construct a Vertex operator which includes the Noether’s current that
arises from Global symmetries, represented by equation(3).

V ∼
∫
∂2zJα∂Xµ∂̃XνO(c, c̃) (3)

In Equation(3) , the measure ∂2z has weight (-1, -1) under rescaling, Jα is the conserved
current, X are a bunch of scalar fields , represented on the worldsheet, O is the operator.
∂Xµ and ∂̃Xν gives us two different excitations and if we check using Weyl invariance, we
will get the first excited states.[3]

And this operator corresponds to a massless gauge boson. Aα
µν in spacetime.
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It’s a BRST-closed operator QBRST = |ψ⟩ = 0 , proving that the first excited states of the
string are massless, thus part of the physical spectrum of the string. Shown below.

As mentioned, ∂Xµ and ∂̃Xν gives us two different excitations, αµ
−1 and α̃ν

+1 . If we
consider an open bosonic string , the first excited state which is level 1 gives us,

|ψ⟩ = Λµαµ
−1|k⟩

where kµ is the momentum. Applying closed BRST condition on the physical state,

QBRST |ψ⟩ = 0 ⇒ k2 = 0

k2 = 0 proves that the first excited states of the string are indeed massless.

The gauge symmetry appears from redundancies in the definition of the vertex operator.
(From gauge transformation Aµ(x) → A′

µ(x) = Aµ(x) + ∂µΛ(x) , we get the gauge
symmetry, δAµ = ∂µΛ)
Hence, we can conclude that Every global symmetry current Jα

µνon the worldsheet leads to
a gauge boson in spacetime → symmetry is gauged, not global.

4 Continuous Global Symmetry Breaking

The question here is - why do continuous global symmetries break ?
There are multiple reasons why. Perturbative approaches fail when it comes to QCD. In
the Hadronization phase of QCD where the coupling constant is strong, perturbative
approaches do not work. At the critical point (, around 150-170 MeV , boundary between
the confined and the unconfined phases) , we move away from confinement. The chiral
symmetry breaks as confinement breaks the hadron composition.
When a system’s ground state does not match the underlying symmetry that the theory
possesses, global spontaneous symmetry is broken. A great example is the Higgs
mechanism , where a U(1) symmetry is spontaneously broken, giving mass to the W and Z
bosons. Whenever a continuous global symmetry is spontaneously broken, there will be
massless scalar fields. These fields are called Goldstone bosons, which we are going to get
into in more detail. But first, let’s look at Symmetries that are available to us in classical
as well as Quantum Field theories.

4.1 Symmetries in Classical Field Theories
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Continuous symmetries are connected to conservation laws by Noether’s theorem as we
have mentioned previously. Consider an action where S =

∫
dDxLϕ , involving fields.

Assuming that there’s some infinitesmal transformation on the field ϕ, we are going to get
ϕ→ ϕ+ ϵaδϕa, where a can be considered as a set of global parametres.[7]

Under the set of global parametres, the action remains invariant. We need the derivative of
the global parametres which will help us recover the invariance under global transformation
in case of constant parametres. To recover the equations of motion, we need the derivative
of the action given by:-

S =

∫
dDJµ

a ∂µϵa(x) = 0

where the derivative of the global parametres is give by, ∂µϵa(x) . now, under the equation
of motion, the continuity equation under Noether’s current remains conserved and this is
denoted by, ∂µJ

µ
a = 0. The Noether charge denoted by Qa remains constant under time

evolution , it is give by Qa =
∫
dD−1xJ0

a

4.2 Symmetries in QFTs

As suggested by Wigner’s theorem, the symmetry of operations of a quantum system is
induced by an unitary or an anti-unitary transformation. Therefore, for continuous
symmetries , the unitary transformation can be constructed by Noether’s charge. Given by
, U = eiϵaQa and as mentioned previously, they act on the fields as :- ϕ→ ϕ́ = UϕU † . This
explicit form of U is written in terms of creation and annihilation operators. The
correlation function can be defined by the path integral, and the path integral can be
written as:-

Z =

∫
DϕϵiS

We can find out the ward identities which are the quantum counterpart of the classical
laws. The correlation function can be defined as :- ⟨X⟩ = 1

Z

∫
DϕXeis , where X is the

product of the fields and is denoted by :- X =
∏

j ϕ(xj). The ward identities of the
quantum counterpart of Noether’s current Jµ

a will be ⟨Jµ
a (x)X⟩ .

We can also consider a set of relations among the correlation functions and conservation
laws. It can be denoted as:- ∂µ ⟨Jµ

a (x)X⟩ and the ward identities would be:-

∂µ ⟨Jµ
a (x)X⟩ = −i

∑
j

δ(D)(x− xj)⟨ϕ(x1).....δϕa(xj)....ϕ(xN)⟩ (4)
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This will be useful in understanding divergences a little bit later.

Upon integrating both sides over spacetime from equation (4) we will obtain
δ⟨ϕ(x1).....(xN)⟩ = 0. This is the reflection of the symmetry on the correlation function and
it is also a non-trivial statement (undergoes transformation) about symmetry as it is
computed as:-

∫
Dϕδ[ϕ(x1).......ϕ(xN)]eis = 0

As we can see this is time ordered, so there will be equal time commutators for ϵ which
tends to 0.

When continuous global symmetries are spontaneously broken, Noether’s current even
though it is conserved (∂µJ

µ
a = 0)under symmetry transformations, it starts to exhibit

divergences in the set of relations . This divergence, leads to massless Goldstone bosons ,
which are excitations.

4.3 The Non-triviality of Noether’s current in symmetry breaking

Noether’s current even though it is a physical observable , produces divergences , because
the symmetry is still present in the underlying Lagrangian whether or not the vacuum
state is invariant. It produces divergences in the set of relations (in a distribution sense)
which gives us the ward identities.

For an unbroken symmetry, Noether’s current is conserved . Now, suppose this symmetry
is broken but vacuum |0⟩ is not invariant under Noether’s charge, we will have :-
Q|0⟩ =

∫
d3xJ0(x)|0⟩ ≠ 0

Q for a symmetry group G. The set of relations for the vacuum state is going to be:-
⟨0|∂µJµ

a (x)|0⟩ .

Considering a scalar field ϕ at vacuum , this will be :- ⟨0|∂µJµ
a (x)ϕ(0)|0⟩ .

From the previous equation(), this will lead to the vacuum term,
iδ(x0))[∂µJ

µ
a , ϕ(0)] + constant

Now for a broken symmetry, the vacuum state does not remain invariant, so we can say
that the commutator will be non zero, [∂µJ

µ
a , ϕ(0)] ̸= 0 =⇒ ⟨0|∂µJµ

a (x)ϕ(0)|0⟩ ≠ 0

If the commutator is non-zero, the current Jµ
a is non-trivial. This is how divergences

appear in the set of relations even if current is conserved.
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4.3.1 The rise of massless poles

Let’s assume that our current term which is Jµ
a , associated with a broken symmetry

appears between two arbitrary states α and β. With respect to an Unitary transformation,
this can be represented as[8]:-

⟨β|Jµ
a (x)|α⟩ = eiqx⟨β|Jµ

a (0)|α⟩

where the difference between the four momentum for the Goldstone bosons and the four
momentum for the arbitrary states is denoted by:- qµ ≡ pµα − pµβ

Since, we know that the current term is non-trivial (i.e, it has non zero matrix element), it
has a pole at q2 = 0. This creates a goldstone boson. The more elaborate proof is given in.
The S-matrix element will emit a Goldstone boson of state |β, q⟩ of four momentum q in
the transition between α and β. Roughly speaking, for each broken symmetry, there will be
atleast one Goldstone Boson.
Let’s take a look at non-triviality from a mathematical perspective.

5 Symmetry Breaking: A mathematical proof

So far, we have seen that global symmetries can be spontaneously broken and we have done
the rigourous mathematical proof behind how massless Gauge bosons arise as a
consequence of symmetry breaking from SU(2) → U(1). We know that from the property
of Global symmetries, Ward identities emerge and from there a path towards symmetry
breaking is formulated.
Now, looking at our problem through the lens of non-trivial holonomy and therefore
breaking the resultant gauge symmetry , this approach provides us with a deep insight into
Wilson loops, boundary conditions as well as compactifications.

But first a few fundamental definitions are in order:-

- Fibre-bundle:- A general structure on a space projected onto another space where each
”fibre” represent a set of points which can be considered equivalent in some way.

- Priniciple-bundle:- A specific kind of bundle where the fibres are copies of lie groups.

- Holomorphic function:- A Holomorphic function can be defined as a complex valued
function of one or more complex variable which is differentiable to the neighbourhood of
each point in a complex space Cn. (include diagram).
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- Homotopy :- A continuous deformation of one function or geometric object into another.

- Holonomy :- Holonomy is a geometric consequence of the curvature of a connection( a
structure which is defined on a fibre bundle) . The holonomy of a connection on a smooth
manifold is the extent to which a parallel transport along a closed loop fails to preserve the
geometric data which is being transported. (give diagram)

- Wilson Line :- Consider a manifold M , take a point on the manifold xi and then project
into an identity gi on a p = 2 , (p+ 1 dimensional brane ) and see how it changes to gf
which are points on a horiontal subspace , considered after projecting . The change
happens on a spacetime curve γ̃ . where, γ : [0, 1] → M between xi and xf .[9] The curve
˜γ(0) = gi and its tangent vectors lie on the horiontal subspace. The fibre bundle represents

a gauge theory between two horiontal subspaces Hi and Hf . This gauge theory can be
represented by : - Aµ(x) = Aα

µT
a(x). Therefore, the Wilson line can be given by: -

gf (tf ) = W [xi, xf ] = Pexp(i
∫ xf

xi

Aµ∂x
µ)

where P is the path -ordering operator. W is gauge invariant under local gauge
transformations. The trace of a closed Wilson line is called a Wilson loop. Wilson lines are
used to describe particles(charges) along gauge groups.

Consider a principle G bundle , given by: - P(M, G) , which is connected over a manifold
M with a non-trivial Holonomy representation is denoted by :- ρ = π1(M) → G.

This representation assigns to each Holonomy class of loops on element G. So, in order to
describe a Holonomy representation associated with the loop γ as mentioned before, we can
define the representation as:-

P([γ]) = Pexp(i
∮
γ

A)

where [γ] denotes the Homotopy class of loop γ.

An example of a Holonomy group

We have to remember that a loop γ , defines the transformation on the fibre.

Let’s consider an R bundle over M where R2 = M. The connection one-form , which is
given by ω and the loop [γ] define a map ρ : π1(M) → G. Take a point h , which belongs
on the group G. and consider a set of loops π1(M) which commutes with ρ(π1(M)) , such
that π1(M) ≡ γ[0, 1] → M [9]
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If we wish to define a subgroup that reduces to H from G, we will define the subgroup as:-

H = {h ∈ G|hρ([γ]) = ρ([γ])h∀[γ] ∈ π1(M)}

Now, the holonomy imposes the condition , for a section along the associated bundle where
the section corresponds to a G equivariant function for g ∈ G. Since ρ(γ) is fixed, only the
elements h ∈ G commuting with ρ(γ) preserve the section. Therefore, the structure group
reduces to H, which is what we are looking for when we talk about group structure
decomposition in symmetry breaking. [check Appendix B]

Considering a Gauge group with G = SU(2), on a spacetime manifold represented by
M = S1 ∗ R3 . S1 represents a compact spatial structure which can arise from
compactification of the extra dimensions.[10]

SU(2) is motivated by the electroweak sector and U can be given by U = exp(iQσ3) where
σ3 are the generators of SU(2) and Q is a constant angle parametrerization of the
Holonomy, which represents the non-trivial field configuration that exists due to the
topology of S1. We are now going to prove how to perform a reduction of the gauge
symmetry from SU(2) → U(1).

5.1 Gauge Symmetry Reduction

The subgroup, as we know H ⊂ SU(2), which commutes with U . Now since U is generated
by the form exp(iQσ3) , we can say that U(1) subgroup of SU(2) is generated by σ3 and as
a result the group SU(2) reduces to U(1). [The Holonomy group reduces to a subgroup H ,
then only gauge transformations on H acts non-trivially]

The Gauge field Aµ can be decomposed into broken and unbroken generators and can be
given by:- g = h⊕m where g is the Lie algebra decomposition.

h is the unbroken generators and m is the broken generator. We have to prove that the
massless Aµ can be decomposed into a combination of both broken and unbroken
generators. Let’s see how this can be accomplished.

Aim:- From the Boundary conditions, we are going to derive both broken and unbroken
generators. The goal is to compactify the higher dimensions and by fixing a gauge , we can
come up with the unbroken generators and the non-trivial holonomy which cannot be
gauged away produces the broken generators and eventually the mass term will emerge
under mode expansion of the constant gauge. Only the subgroup which can commute with
the non-trivial holonomy remains unbroken.
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5.1.1 Boundary Condition

As a continuation from the Holonomy group, let’s assume that we are compactifying one
spatial direction , let’s say x ∼ x+ L , thereby making spacetime topologically
R(d− 1) ∗ S1.

The holonomy along S1 can be described by the Wilson loop Ω = Pexp(i
∮
γ
Ax∂x) ∈ C.

or along the circumference we can write, Ω = Pexp(i
∮ L

0
Ax∂x) ∈ G. Now, a field ϕ(x)

which is charged under the gauge group G must satisfy:- ϕ(x+ L) = Ωϕ(x). This is a
twisted boundary condition, where the twist is governed by the Holonomy. Now, if the
Holonomy is trivial i.e, Ω = 1, the field can be said as periodic.

We are interested in SU(2) decomposing into U(1) through compactification on a circle S1

with a non-trivial Holonomy. Now, since compactification is introduced, we are interested
in compactifying a higher dimensional gauge theory which is a very powerful way to realize
Spontaneous Symmetry breaking via Holonomy.

5.1.2 Why Higher Dimensions ?

The reason being , we can obtain Effective 4D theories because gauge fields are vector
fields , Aµ with no extra scalar-like components unless we introduce them by hand (like the
Higgs field). But in higher dimensions, gauge fields have extra components. For eg:- in 5D
[11], the gauge field can be written as Aµ(x

µ, x5) with M = 0, 1, 2, 3, 5 . 3

A5 behaves like a scalar field from a 4D perspective. So, x5 , when it is compactified on a
circle S1, it would be:-

Ω = Pexp(i
∫ L

0

A5∂x
5)

This holonomy cannot be gauged away globally due to the nontrivial topology of S1. It
leads to symmetry breaking: only the subgroup that commutes with Ω remains unbroken.
This holonomy cannot be gauged away globally due to the nontrivial topology of S1. It
leads to symmetry breaking: only the subgroup that commutes with Ω remains unbroken.
This method of breaking gauge symmetry spontaneously by a Wilson loop W is also known
as the Hosotani mechanism.

3Note:- It’s actually the index for the fifth coordinate, but in many Kaluza - Klein or extra-dimensional setups, the numbering

skips 4 to avoid confusion with the Lorentz index range , µ = 0, 1, 2, 3
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5.1.3 The Set-Up

We are considering a Gauge theory on Rd ∗ S1 . Let’s start by compactifying one spatial
dimension, let’s say x5 ∼ x5 +L, so the spacetime is Rd ∗ S1 within the Gauge group SU(2)
So, the Holonomy representation can be written as:-

Ω = Pexp(i
∫ L

0

A5(x
5)∂x5) ∈ SU(2)

5.1.4 Adjoint on scalar S1

The aim is to compactify A5(5D) → S1 . Introduce a Wilson loop, choose a Wilson line
gauge which is a constant and derive the generators.

Let ϕ(x) ∈ g (adjoint scalar) . Under Gauge transformation, this will be:-

ϕ(x+ L) = g(x+ L)ϕ(x)g(x+ L)−1

If the gauge field has a non-trivial Wilson line Ω, the periodicity [12] will be twisted as
mentioned in the previous section. This gives us :- ϕ(x+ L) = Ωϕ(x)Ω−1 . If we choose a
gauge where A5 is constant, the Wilson loop(Holonomy) along the compact direction can
be written as:-

Ω(xµ) = Pexp(i
∫ L

0

A5(x
µ, x5)∂x5) ∈ G

Therefore, the Gauge invariant using ϕ(x+ L) = g(x+ L)ϕ(x)g(x+ L)−1 will be
Ω(xµ) → g(xµ)Ω(xµ)g−1(xµ).

So, from here we can choose a gauge which is constant, which will give us both the broken
and the unbroken generators. From there, we can derive the mass terms.

We can choose A5 which is a constant and the gauge can be written as:-

A5(x
µ, x5) =

ϕ(xµ)

L
, ϕ ∈ g ∈ SU(2)

17



Let’s choose the field ϕ which will give us the generators and thereby, the Holonomy.

ϕ = ασ3 =
α

2

(
1 0
0 −1

)
⇒ Ω = exp(iQaσ

3)

where Qa is the charge.

If we consider the Wilson loop i.e, Ω(xµ) = exp(iϕ(xµ)),

- The non-local Wilson line operator becomes a local field ϕ(xµ)

- ϕ behaves like a scalar field in 4 Dimensions.

So, we can say that the generator, σ3 ∈ SU(2) commutes with Ω , while σ1 and σ2 do not.
Thus,

- σ3 generates an unbroken U(1)

- σ1 and σ2 , generate broken direction.

Therefore, SU(2) → U(1) . A5 basically becomes a scalar. In Wilson line gauge, the entire
content of the gauge-invariant Wilson loop is encoded in a constant background value of A5

. This value cannot be gauged away globally due to the nontrivial topology of S1 and it
can break gauge symmetry.

5.1.5 The mass term

If we perform mode expansion(Fourier) on the Gauge A5(x
µ, x5) , we are going to get:-

A5(x
µ, x5) =

∑
n∈Z

An
µ(x

µ)e(2πinx5/L)

The covariant derivative acting on charged modes is shifted by A5 . The effective mass
denoted by mn becomes -

mn =
2πn

L
+
Qa

L

where, mn = 2πn
L

is the effective 4D mass ( From Kaluza–Klein derivation)[13].

So, the off-diagonal component becomes massive , while the diagonal component remains
unchanged.

18



- A±
µ ∼ σ1,2 becomes massive while,

- A3 ∼ σ3 remains unchanged.

which is consistent with what we had formulated previously, h = broken generators, m =
unbroken generators.

5.1.6 Field Decomposition

So, the final field decomposition from g = h⊕m is going to look like:- SU(2) = U(1)⊕m ,
where U(1) is generated by:- σ3 and m is generated by :- σ1 and σ2 .

Therefore, from here we can conclude that : -

- Fields in h = U(1) - massless gauge bosons (photon-like).

- Fields in m:- massive bosons due to non-trivial holonomy, which cannot be gauged away.

This is structurally more or less the same in the Higgs mechanism, but geometrically we
are describing it using the boundary conditions via the Wilson line.

The Wilson line is going to be useful a little bit later.

5.2 Goldstone Excitations, Spontaneous symmetry breaking

Continuing from section (4.2) , we have the correlation function for the current Jµ
a (x)

which is ⟨Jµ
a (x)X⟩ from the Ward identity ⟨X⟩ . From equation (4) , if we picked a single

field X, ϕ(y) then equation (4) would be reduced to:-

∂µ ⟨Jµ
a (x)ϕ(y)⟩ = −iδD(x− y)⟨δaϕ(y)⟩

we can take the fourier transform with respect to x, and it will give us:-∫
dDxeipx∂µ ⟨Jµ

a (x)ϕ(y)⟩ = −i
∫
dDxeipxδD(x− y)⟨δaϕ(y)⟩

−i
∫
dDxeipxpµ ⟨Jµ

a (x)ϕ(y)⟩ = −ieipy⟨δaϕ(y)⟩

pµ ⟨Jµ
a (x)ϕ(y)⟩ = eipy⟨δaϕ(y)⟩
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pµ
〈
Jµ
a (x)e

−ipyϕ(y)
〉
= ⟨δaϕ(y)⟩

where, the Fourier transform can be identified as: - Jµ
a (p) =

∫
dDxeipxJµ

a (x). Then, we can
integrate both sides with respect to y and get ,

pµ ⟨Jµ
a (p)ϕ(−p)⟩ =

∫
dDy⟨δaϕ(y)⟩ = ⟨δaϕ(p = 0)⟩

The term , ⟨δaϕ(p = 0)⟩ characterizes the phases and when ⟨δaϕ(p = 0)⟩ ≠ 0, it indicates
spontaneous symmetry breaking. When the phase is broken, the correlation function must
have a massless pole at zero-momentum ⟨Jµ

a (p)ϕ(−p)⟩ ∼
pµ

p2

This indicates the presence of massless excitations and these excitations can be termed as
the Goldstone Bosons which is consistent with what we had found in section(4.3.1)

6 Conclusion

A string theory, QFT and a topological route , all of these have led to the existence of
Goldstone Bosons. We figure out how massless poles arise as a consequence of symmetry
being either gauged/broken. A broader direction has been considered for this paper and
many other approaches can also be considered as we try and investigate how global
symmetries work at low energies as well as at the Planck scale. At ordinary as well as
higher form symmetries, topological operators start behaving like symmetry operators and
using such operators , we can perform analysis on the behavior of symmetries and also
come up with a formulation on how Effective Field Theories (EFTs) behave when coupled
with gravity. These are interesting and emergent areas of theories which will be discussed
as we explore Global Symmetry behavior in Quantum Gravity.

7 Appendix A

One can consider a compact Gauge Group G. The corresponding representation of the
matrices of G can be denoted T1 and the structure constants of G in the basis can be
written as:- fk

ij.

[Ti, Tj] = fk
ijTk
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This is the Yang Mills type. The field strengths are the covariant derivative of the matter
fields , which are denoted by:- f I

µ,ν and Dµψ
i where ψi is the matter field, which can be

fermionic or bosonic.

In BRST formalism, the gauge parameters are replaced by anticommutating fields which
are called the ”ghost fields”. BRST cohomologies capture important physical information
about the system. The reason for BRST symmetries and cohomologies being important is
to become a substitute for gauge redundancies , which would otherwise become obscure.
[14]

8 Appendix B

In general when we are given a subgroup G, one choice that we can make is to take the
manifold to be the group itself. G = M. In this case, each element , g ∈ G gives us the
natural map M → M given by ǵ ∈ M → g.ǵ.

Another choice is to take a subgroup(coset space). This is the manifold M = G
H
. where

H ⊂ G is a group of G , which is exactly what we were trying to prove in section (5)

A point g in the coset G
H

is defined by the equivalence relation among the elements of G.
g ≡ g.h. for all h ∈ H. Again, any element of g ∈ G gives us a natural map M → G

H
→ G

H
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