
The need for Gauge Field Theories

Soumyadip Nandi

July 2024

1 Introduction

Let’s begin by trying to understand the necessity of studying a field theory
approach to quantum mechanics and as the title suggests why we need gauge
field theories. We will start off by understanding how gauge theory was
formalized, invariance and symmetry and from there we will work our way up
to how we can use gauge theory to construct strong and weak interactions (the
strong force and the weak force). One thing that needs to be considered while
studying field theories , we are trying to understand processes that occur at
very small i.e. (quantum-mechanical) scales and very large (relativistic)
energies. One might ask why we must study the quantization of fields. Just
like the classical formalism approach, why can’t we just quantize relativistic
particles the way we quantized non relativistic particles? . The answer to that
question is simple. When we try to quantize relativistic particles at high
energies and shorter distances, the wave equation breaks down. In other
words, the Schrodinger equation works for a free particle , but when you try to
add relativity to it, it breaks down. We also run into other problems like
negative energy solutions, a disorder in first and second order derivatives,
negative probability densities etc. Therefore, a totally new framework is
needed to deal with particles (fixed number of particles or otherwise) at
relativistic levels. This is how quantum field theory was formalized and As we
have been hearing since high school, particles are just field excitations acting
as operators on a 2D Hilbert space. I am assuming that you as the reader are
familiar with concepts like principle of least action, four vectors, Lagrangian
and Hamiltonian formalism. If not, check out any MIT OCW playlist.

2 How gauge theory was formalized

If we consider the dynamics of a particle as Sir Issac Newton had formulated
in classical mechanics, it was carried into perfection by both Lagrange and
Hamilton. The space-time distinction still remained vivid. In field theories, if
we consider a field (x, t) the spatial variables x have joined the temporal time
variable t. The concept of “Spacetime” has come into being as the
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4-dimensional aspect upon which field theories are written. Field theories as a
matter of fact have actually have predisposed relativity
for example:- the Hamiltonian formulation of the least action principle:- which
suggests that-

δ
∫
time−interval Ldt = 0

The field theory counterpart will be:

δ
∫
space−time Ldxdydzdt = 0

where L is the Lagrangian density.
Considering a real scalar field, we can consider its Lagrangian. That is the
change in action at a distance and thus derive the Euler Lagrange equations of
motion. We can consider several local fields in interaction with one another,
giving rise
to complex scalar fields. More on that later.
Now, coming to the question of how gauge theory was formalized , if we
consider classical electrodynamics and we try to add relativity to it, we get
thrown into certain contradictions. In classical electrodynamics , particles are
treated as well defined points, unlike in quantum electrodynamics where there
is a combination approach. Considering a point charge, the field produced by
a point charge is inversely proportional to the square of the distance from the
charge. This as we know is called the coulomb’s law. Thus the potential of the
field ϕ = e

R . If we have a system of charges, then the field produced by the
system is equal to the superposition of the sum of each field individually.
Given the formula,
R is the distance from the charge e.

ϕa =
∑ eb

Rab

where Rab is the distance between the charges ea , eb
But, we know that in relativity , every elementary particle must be considered
as point-like. So, at R−>0, the potential becomes infinity. Thus, according to
electrodynamics, the electron would have to have “infinite” self energy and
mass. This violates the fundamental framework of classical electrodynamics.
Thus special relativity working conjointly with the principle of superposition
throws us into contradictions when it comes to shorter distances.
So, we needed a new “theory of interaction” to design free fields and thus, we
came up with gauge theory where the dynamics remain invariant under certain
changes/ transformations,

L → L′
= L+ ∂µAµ

where Aµ is the gauge field representing interactions and Aµ can be anything.
Let’s talk about invariance for a second:-
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3 Invariance

Definition:
- Invariance is a broader concept and refers to the property of remaining
unchanged under a specific transformation or set of transformations.
- In physics, a system or an equation is said to be invariant under a particular
transformation if applying that transformation does not alter the physical laws
or properties described by the system or equation.

1. Examples:
- In classical mechanics, Newton’s laws are invariant under Galilean
transformations. - In special relativity, physical laws are invariant under
Lorentz transformations.

2. Mathematical Representation:
- Invariance is often expressed mathematically using transformation rules or
equations that remain unchanged after a specified transformation.

4 Lagrangian Invariance:

The Lagrangian formalism in physics is based on the principle of least action,
where the dynamics of a system are described by minimizing the action
integral. The action ( S ) of a system is defined as the integral
of the Lagrangian L over time t:

S =
∫ t2
t1

L(q, q̇, t) dt

where:

L is the Lagrangian function, which depends on the generalized coordinates q,
their time derivatives q̇ , and possibly time t.
t1 and t2 are the initial and final times of the system’s motion.
The principle of least action states that the true trajectory of a system between
two points in configuration space is the one that minimizes the action integral.
The Lagrangian formalism is invariant under certain transformations, such as:

1. Time Translation Invariance:

If the Lagrangian L does not depend explicitly on time t, i.e., ∂L∂t = 0, then
the system is invariant under time translations. This implies that the
equations of motion derived from the Lagrangian are unchanged if the
system’s initial time is shifted by a constant.

2. Generalized Coordinate Transformations:
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The Lagrangian formalism is invariant under transformations of the
generalized coordinates q. If the Lagrangian remains invariant under such
transformations, the resulting equations of motion are equivalent. This
property is related to the principle of relativity in physics.

3. Symmetry Transformations:

If the Lagrangian remains unchanged under certain symmetry
transformations, such as translations, rotations, or gauge transformations,
then the resulting equations of motion are invariant under those
transformations. This leads to conservation laws, such as conservation of
momentum or energy, arising from Noether’s theorem.
Mathematically, the invariance of the Lagrangian under a transformation can
be expressed as:

δS =
∫ t2
t1
δL dt = 0

where δL represents the variation of the Lagrangian under the transformation.
This condition leads to the Euler-Lagrange equations of motion, which govern
the dynamics of the system. Overall, the Lagrangian formalism provides a
powerful framework for describing the dynamics of physical systems, and its
invariance under various transformations plays a crucial role in understanding
the underlying symmetries and conservation laws of nature.
But, since we are interested in field theory, we are going to take a look at
lagrangian invariance from a field theory perspective.

5 Invariance for relativistic field equations

From a real scalar field, we can develop its lagrangian density

L(t) =
∫
d3xL(ϕ, ∂µϕ)

Therefore, the action will be:

S =
∫ t1
t2
dt

∫
d3xL =

∫
d4x L......eq(1)

Recall that in particle mechanics L depends on q and ˙q.. Similarly, here in
field theory it depends on ϕ and ϕ.

We can determine the equations of motion by the principle of least action. We
vary the path, keeping the end points fixed and require δS= 0
Considering a real scalar field, we can consider its lagrangian. That is the
change in action at a distance and thus derive the euler lagrange equations of
motion.
The equations of motion when we expand on eq (1).
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δS =
∫
∂4x[∂L∂ϕ .δϕ + δL

∂(∂µϕ))
.δ(∂µϕ)]

Requiring δS = 0, we get the Euler lagrange equations of motions for the path

d
dt

(
∂L

∂(∂µϕ)

)
− ∂L

∂ϕ = 0

We can derive our first relativistic field equation from the lagrangian density
called the Klein Gordon equation.

From the lagrangian density

L = 1
2∂µϕ∂

µϕ− 1
2m

2ϕ2

(You can derive it from E = mc2 + p2c4)
we can determine the klein gordon equation by subsituting the value of the
lagrangian density in the euler lagrange equation of motion. We are going to
get,

−m2ϕ− ∂µϕ∂
µϕ = 0

Therefore,

= ϕ(m2 + ∂µϕ∂
µϕ) = 0

But there are certain disadvantages like:- negative energy solutions, negative
probability densities because it is a second order derivatives and only works for
spin 0 particles. Therefore we needed the Dirac equation for the first order
derivative, which also works for spin 1/2 particles and has positive probability
densities.

LDirac = ψ̄(iγµ∂µ −m)ψ

To construct such field theories we need to prove that these theories remain
invariant under Lorentz transformation.
But, the Dirac lagrangian density needs to remain invariant, which we will get
to in a moment The laws of Nature are relativistic, and one of the main
motivations to develop quantum field theory is to reconcile quantum
mechanics with special relativity. To this end, we
want to construct field theories in which space and time are placed on an equal
footing
and the theory is invariant under Lorentz transformations.

x → (x
′
)µ = λ

where λ is a function of space time.
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The Lorentz transformations have a representation on the fields. The simplest
example is the scalar field which, under the Lorentz transformation .

ϕ(x) → ϕ
′
(x) = ϕ(λ−1x)

The inverse appears in the argument because we are dealing with an active
transformation in which the field is truly shifted.

6 Invariance and symmetry

Now, we move on to invariance and symmetry. Invariance as we have known
from our high school physics classes, is the when the properties of a system
remains unchanged under transformations. In physics, a system or an equation
is said to be invariant under a particular transformation if applying that
transformation does not alter the physical laws or properties described by the
system or equation. A couple of typical examples can be: - In classical
mechanics, Newton’s laws are invariant under Galilean transformations and in
special relativity, physical laws are said to be invariant under Lorentz
transformations. Coming to symmetries, in quantum field there are two kinds
of symmetry, local symmetry and global symmetry.

A global symmetry is a transformation that acts uniformly on all points in
spacetime. Mathematically, a global symmetry transformation is represented
by an operator U .
U that commutes with the field operators of the theory. For a scalar field
theory, a global symmetry transformation can be expressed as

ψ(x) → ψ′(x) = Uψ(x)ϕ(x)

where ψ(x) is the field operator at spacetime point x, and U is the global
symmetry operator. Global symmetries lead to conservation laws through
Noether’s theorem which states that for every symmetry there is a conserved
quantity, whether it be momentum, angular momentum or energy.
For example, a global U(1) symmetry leads to the conservation of electric
charge in QED.
A local symmetry, also known as gauge symmetry, is a transformation that
varies from point to point in spacetime. In gauge theories, such as Quantum
Electrodynamics (QED) and Quantum Chromodynamics (QCD), local
symmetries are associated with gauge fields and gauge bosons. Mathematically,
a local symmetry transformation is represented by a gauge transformation

U(x) that depends on spacetime coordinates

ψ(x) → ψ′(x) = U(x)ψ(x)
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Here, ψ(x) represents the field operator of the fermion field, and
U(x) is the gauge transformation. Gauge symmetries introduce redundancy in
the description of the theory, which manifests as gauge degrees of freedom.
Gauge theories are constructed to be invariant under local gauge
transformations, leading to the emergence of gauge fields and ensuring that
physical observables are independent of the choice of gauge. More on gauge
symmetry, a little later.

7 Mathematical formalism for gauge principle

The gauge principle is a fundamental concept in theoretical physics that states
that the laws of physics should be invariant under local transformations of a
certain group. In the context of gauge theories, such as electromagnetism and
the weak and strong nuclear forces, the gauge principle underlies the
symmetries and interactions of elementary particles.

Mathematical formalism:

1. Gauge Transformations:

Let’s consider a complex scalar field ψ(x) as an example. Under a gauge
transformation, the field ψ(x) undergoes a local phase transformation:
ψ(x) → ψ′(x) = eiα(x)ψ(x)

Here, α(x) is an arbitrary real-valued function of spacetime x.

2.Gauge Invariance:

The gauge principle demands that the physical predictions of the theory
remain unchanged under such local gauge transformations. Mathematically,
this can be expressed as:

L(ψ, ∂µψ,Aµ) = L(ψ′, ∂µψ
′, Aµ)

where the gauge field Aµ representing the interaction.

3. Introduction of Gauge Field:

To ensure gauge invariance, we introduce a gauge field Aµ(x)
that transforms under gauge transformations such that the gauge-invariant
derivative is preserved. This is done by replacing ordinary derivatives with
covariant derivatives:

Dµ = ∂µ − iqAµ
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where q is a coupling constant associated with the interaction.

4. Covariant Derivative:

Under a gauge transformation, the gauge field Aµ transforms as:

Aµ → A′
µ = Aµ − 1

q∂µα(x)

which can be derived from

∂µψ = 1
e (ψ(x+ ϵ.n)− ψ(x))

(the two fields are subtracted because of different transformations and nµ is
the direction vector)

where ϵ is an infinitesmal change which tends to zero. This can be transformed
under an Unitary transformation, which gives us the covariant derivative as,

Dµψ(x) = dµψ(x)− iqAµψ(x)

We derive the covariant derivative to get the above gauge field Aµ
transformation as the above.
The covariant derivative ensures gauge invariance of the Lagrangian.

5. Gauge Symmetry Group:

The gauge principle is associated with a gauge symmetry group, such as U(1)
for electromagnetism or SU(2) for the weak force. The choice of gauge group
depends on the specific theory being considered. The gauge principle is a
fundamental concept, underlying the formulation of gauge theories and the
understanding of fundamental interactions between elementary particles. It
ensures the consistency and invariance of physical laws under local
transformations, leading to the introduction of gauge fields and the covariant
derivatives that preserve gauge invariance.

8 Gauge symmetry

Now, to ensure gauge invariance, the electromagnetic potential Aµ needs to
transform under gauge transformations. It transforms as:

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µΛ(x)

for a function Λ(x) We’ll ask only that (x) dies suitably quickly at spatial
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x i( x= infinity) ! . . We call this a gauge symmetry. The field strength
remains locally invariant. We can prove it by taking a Dirac field just like we
did in the previous section

ψ(x) = eiα(x)ψ(x) which remains phase invariant under α(x) rotations.

So what are we to make of this? We have a theory with an infinite number of
symmetries, one for each function (x). Previously we only encountered
symmetries which act the same at all points in spacetime. Noether’s theorem
told us that these symmetries give rise to conservation laws. Do we now have
an infinite number of conservation laws? . The answer is no! Gauge
symmetries have a very different interpretation than the global symmetries
that we make use of in Noether’s theorem. While the latter take a physical
state to another physical state with the same properties, the gauge symmetry
is to be viewed as a redundancy in our description. That is, two states related
by a gauge symmetry are to be identified: they are the same physical state.

9 Gauge Orbit

Since gauge invariance is a redundancy of the system, we might try to
formulate the theory purely in terms of the local, physical, gauge invariant
objects, both the electric and magnetic field

Ē and B̄ .

This is fine for the free classical theory: Maxwell’s equations
were, after all, first written in terms of Ē and B̄ .
The picture that emerges for the theory of electromagnetism is of an enlarged
phase space, foliated by gauge orbits as shown in the figure. All states that lie
along a given
line can be reached by a gauge transformation and are identified. To make
progress, we pick a representative from each gauge orbit. It doesn’t matter
which representative we pick — after all, they’re all physically equivalent. But
we should make sure that we
pick a “good” gauge, in which we cut the orbits.
Different representative configurations of a physical state are called different
gauges.
There are many possibilities, some of which will be more useful in different
situations.
Picking a gauge is rather like picking coordinates that are adapted to a
particular
problem. Moreover, different gauges often reveal slightly different aspects of a
problem. Here we’ll look at two different gauges.
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10 Gauge fixing

As mentioned earlier, to make progress , we pick a representative from each
gauge orbit. It doesn’t matter , they are physically equivalent

Aµ → Aµ + ∂µλ

where λ$isanarbitraryscalarfunction.
For any massless vector field, we have to choose a gauge condition to reduce
the number of degrees of freedom.
∂µA

µλ = 0 .

This is also known as lorentz gauge. This imposes one constraint. For 4
dimensions , we have 4 degrees of freedom. The gauge condition allows us to
eliminate one more degree of freedom.
Therefore, 4(initial components) - 1(Lorentz gauge)= 3 degrees of freedom.
But, this isn’t good enough. From Maxwell’s equations, we know that
Aµ = (ϕ, Ā), then the electric field Ē and magnetic field B̄ are defined by:

Ē = −∇ϕ− ∂Ā
∂t and

B̄ = ∇XĀ

and the remaining two are given by the equations of motion

∇.Ē = 0 and

∂Ē
∂t = ∇XB̄.

If we expand , ∇.Ē = 0, we are going to get

∇2ϕ−∇∂Ā
∂t = 0

Now, since we know from Maxwell’s equations that Aµ = (ϕ, Ā) in that case ,

∇2A−∇∂Ā
∂t = 0.

We can make use of residual gauge transformation ∇.Ā = 0 (coloumb gauge).
Therefore A = 0.
So, one more degree of freedom has been fixed.

So , 4(initial components) - 1(Lorentz gauge) -1(coloumb gauge) = 2

Hence, only 2 degrees of freedom are needed. So, we have been able to prove
that a massless vector field , such as a photon has two degrees of freedom
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corresponding to its two polarization states. We can also prove it by directly
quantizing the electromagnetic field.

11 Prove that the Maxwell Lagrangian is
gauge invariant

To prove that the Maxwell Lagrangian is gauge invariant, we need to show
that the Lagrangian density

L = − 1
4FµνF

µν

remains unchanged under a gauge transformation of the potentials.
1. Gauge Transformation

The gauge transformation of the four-potential Aµ
is given by:

A′
µ = Aµ + ∂µΛ

where Λ is an arbitrary scalar function of space and time.

2. Field Strength Tensor

The field strength tensor Fµν is defined as:

Fµν = ∂µAν − ∂νAµ

Under the gauge transformation, the new field strength tensor F ′
µν is:

F ′
µν = ∂µA

′
ν − ∂νA

′
µ

Substituting the gauge-transformed potentials:

F ′
µν = ∂µ(Aν + ∂νΛ)− ∂ν(Aµ + ∂µΛ)

F ′
µν = ∂µAν + ∂µ∂νΛ− ∂νAµ − ∂ν∂µΛ

Since the partial derivatives commute (from commutation relations)

∂µ∂ν = ∂ν∂µ : F ′
µν = ∂µAν − ∂νAµ = Fµν

Thus, the field strength tensor Fµν is invariant under the gauge
transformation:
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F ′
µν = Fµν

3. Lagrangian Density

The Lagrangian density for the electromagnetic field is:

L = − 1
4FµνF

µν

Under the gauge transformation:

L′ = − 1
4F

′
µνF

′µν

Since we have shown that F ′
µν = Fµν :

therefore,

L′ = − 1
4FµνF

µν = L

So, in conclusion, the Maxwell Lagrangian density L = − 1
4FµνF

µν

is indeed gauge invariant because the field strength tensor Fµν remains
unchanged under the gauge transformation of the potentials. Therefore, the
Lagrangian density itself remains unchanged under gauge transformations,
proving the gauge invariance of the Maxwell Lagrangian. The maxwell
lagrangian is essential because it describes the propagation of a free fermion.

12 Prove that Dirac Lagrangian density with
the covariant derivative is gauge invariant
under local gauge transformations.

To apply the gauge principle to the Dirac equation, we start with the Dirac
Lagrangian density, which describes the dynamics of a spin-1/2 particle (e.g.,
electron) in the presence of an electromagnetic field. The Dirac Lagrangian
density is given by:

LDirac = ψ̄(iγµ∂µ −m)ψ

where ψ is the Dirac spinor field, ψ̄ is its conjugate, γµ are the Dirac matrices,
∂µ is the partial derivative with respect to spacetime coordinates, and m is the
mass of the particle.

We can prove it by taking the Dirac equation and applying the Euler Lagrange
equation to it.
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Now, let’s introduce the gauge principle to this Lagrangian by making it
invariant under local gauge transformations. The gauge transformation for the
Dirac field ψ is given by:

ψ(x) → ψ′(x) = eiqΛ(x)ψ(x)

where q is the charge of the particle and λ(x) is a scalar function of spacetime.
To maintain gauge invariance, we need to introduce a covariant derivative Dµ

to replace the partial derivative in the Dirac Lagrangian:

Dµψ = (∂µ − iqAµ)ψ

where, Aµ is the electromagnetic vector potential. Now, let’s replace the
partial derivatives in the Dirac Lagrangian with covariant derivatives:
To ensure gauge invariance, the electromagnetic potential Aµ needs to
transform under gauge transformations. It transforms as:

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µΛ(x)

Substituting this transformation into the expression for the covariant
derivative Dµ , we find:

Dµψ = (∂µ − iqAµ)ψ → (∂µ − iqAµ + iq∂µΛ)ψ
= (∂µ − iqAµ + iq∂µΛ)ψ
= (∂µ − iq(Aµ + ∂µΛ))ψ
= (∂µ − iqA′

µ)ψ
′

Thererfore,

D′
µ(x) = Dµ(x)

Similarly, the Dirac Lagrangian density with the covariant derivative is gauge
invariant under local gauge transformations.

LDirac = ψ̄(iγµDµ −m)ψ
= ψ̄′(iγµDµ −m)ψ′

Thus, we have successfully applied the gauge principle to the Dirac
Lagrangian, ensuring that it remains invariant under local gauge
transformations.

13 QED, QED Lagrangian
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As we have derived previously the Dirac Lagrangian density, we can see that it
acts as interacting theory between an electromagnetic field and spin 1/2
particles. We can formulate the Lagrangian for QED by the quantization of an
electromagnetic field , thus giving rise to a photon.
Let’s now build an interacting theory of light and matter. We want to write
down a Lagrangian which couples the gauge field A to some matter fields,
either scalars or spinors. For example, we could write something like: ( from
The maxwell lagrangian)

L = − 1
4FµνF

µν − jµAµ

where jµAµ is some function of a matter field.

If we apply the equations of motion, we can get the conserved current.

dµj
µ = 0

Therefore, the maxwell lagrangian with a conserved current term will be. This
term will be useful in a bit.

L = − 1
4FµνF

µν − ∂µF
µνAµ

This term will be useful in a bit.
Now, in order to construct an interaction theory where the scalar field is
coupled with a fermion , we first need to prove that current is conserved by
Noether’s theorem under u(1) symmetry, which is

jµν = ψ̄γµψ

If we recall the Dirac lagrangian density,

LDirac = ψ̄(iγµ∂µ −m)ψ

Under a U(1) symmetry,

ψ 7→ eiαψ
ψ̄ 7→ e−iαψ̄,

we find the Lagrangian is invariant.
Now considering the variation parameter α

L → L+ δL where,

δL = 0
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As part of Noether’s theorem, we find the implicit variation in the Lagrangian
due to variation of fields. If the equation of motion for
ψ and ψ̄ will be:

δL = ∂µ(
∂L

∂(∂µψ)
δψ + ∂L

∂(∂µψ̄)
δψ̄)

where, δψ(x) = iαψ(x)
This immediately simplifies as there are no partial derivatives of
ϕ and ψ̄

∂L
∂(∂µψ)

= iψ̄γµ

0 = α∂µ(ψ̄γ
µψ)

Therefore, the conserved current will be

jµ(x) = ψ̄(x)γµψ(x)

which will be the interaction term when we try to couple an electromagnetic
field with fermions
So, For any internal symmetry we can prove that the lagrangian of dirac plus
the lagrangian of maxwell plus an interaction remain gauge invariant.

LQED−int = − 1
4FµνF

µν + ψ̄(iγµ∂µ −m)ψ + ψ̄γµψ

and this is the Lagrangian of qed with an interaction term.
we, can also prove that the covariant derivative remains gauge invariant

Dµψ = ∂µψ + ieAµψ → e−ieλDµψ

This only picks up a phase λ
This ensures that the whole Lagrangian is invariant, since

ψ̄ =→ e−ieλ(x)ψ̄

If we wish to consider several species of charged particles at once, we simply
duplicate L Dirac and
L -int for each additional species. And with that we can finally get to
understand Feynman rules for scattering amplitudes for photons.

For a scalar particle we can derive the Yukawa lagrangian , It is similar to
QED, but with the photon replaced by a scalar particle. The interaction term
contains a dimensionless coupling constant g, analogous to the electron charge
e. Yukawa originally invented this theory to describe nucleons (psi) and pions
(phi). In modern particle theory, the Standard Model contains Yukawa
interaction terms coupling the scalar Higgs field ( which we will get to) to
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quarks and leptons; most of the free parameters in the Standard Model are
Yukawa coupling constants.

The kind of gauge invariance that usually u(1) symmetry falls under is called
Abelian gauge theory, because the gauge is dependent on a single massless
vector field.

14 What can gauge theories solve/ the need for
gauge invariance

So far in this tutorial, we have been able to prove that the dirac lagrangian as
well the maxwell lagrangian remain gauge invariant under gauge
transformations, but what can gauge theories actually do for us and why do
we need to prove gauge invariance? The reason being that when we interact
between fields, a connection develops which is usually the kinetic energy of the
gauge. This connection gives rise to a curvature.
The best possible example is probably the electromagnetic field, comprising
both electric (Ē and B̄) and magnetic field connections. Remember in space
time symmetry , when transformations occur along a loop in space time , we
call it Riemann curvature. Even if we do not consider space time symmetries,
but only think in terms of internal symmetries there is still a curvature .
Think about a quark field, in red, blue and green space, we can transform it
around an infinitesimally small space and it will still remain gauge invariant(or
the gauge covariant will remain invariant under local gauge transformations).

q→q̄

The field will be rotated , but the symmetry will be conserved because it
remains gauge invariant(Noether’s theorem).
For an electron field (internal symmetry) which goes under U(1)
transformation:

ψe(x) −→U(1)−→ eiΘ(x)ψe(x)
The absolute term will remain gauge invariant, producing an electron and a
positron.

|ψe−|2 = (ψe−)
∗.(ψe−)

The absolute term will be giving mass to the electron, which corresponds to
the mass of the corresponding field. So,

(ψe−)
∗.(ψe−).γ

will be the interaction term when interacting with a photon. Show the
corresponding feynman diagram.
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Therefore, the term |ψe−|2 is gauge invariant.
Now, coupling with matter and coupling with fermions and also when it comes
to interactions with different fields, these internal symmetries need to be
conserved and thus remain gauge invariant, for example quantum
electrodynamics remains gauge invariant under u(1) symmetry and according
to the yang mills theory gauge remains invariant under su(n) transformations.
There are cases however, when at low energy solutions and lower range the
symmetry is not maintained even though the lagrangian remains invariant,
this is called spontaneous symmetry breaking and it gives rise to gauge bosons.
Unification of different gauge interactions can lead to unified theories. For eg:-
The unification of U(1) and SU(2) symmetry leads to the unified electroweak
interaction and eventually we can get to a grand unified theory, which can
explain all interactions.

15 Constructing strong su(3) interaction and weak
interaction with gauge theories

Taking into account what we have discussed earlier, that according to the yang
mills theory , gauge remains invariant under SU(n) symmetry transformations.
We can simply replace the yang mills lagrangian into the previously discussed
maxwell lagrangian and we are going to get the action S for QCD. N= 3 will
describe the strong interaction and N =2 will describe the weak interaction.
There are N2 − 1 = 8 gauge bosons, which we call gluons, which couple to
fermions, which we call quarks, which transform in the defining 3-dimensional
representation of SU(3).

The three different values for the index are sometimes labelled by different
colours (red, green, and blue), hence the name chromodynamics.

Weak interaction example

If we consider a weak interaction where quarks change their flavour. (su(2)
flavour dynamics).
Let’s consider an interaction where a neutron gets converted into a proton by
exchanging a W− gauge boson. The W− is carrying away a negative charge
and it bestows a negative charge on the left handed electron upon conservation
of charge. The gauge symmetry remains preserved between left handed and
right handed electrons from where we choose to see it. A right handed electron
gets converted to a left handed electron by the interaction of some field known
as the higgs field. when the field ϕ = 0,
then the potential energy of the marble is also zero. When the marble
oscillates from top to bottom, it is at its lowest energy state.
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But, the field has some value and can therefore interact with the fields of other
particles. The marble can roll around at the bottom of the trough and
potential energy is at zero. So no energy is required and that is known as the
goldstone boson which is massless because it requires no energy.

The Goldstone theorem states that for every spontaneously broken continuous
symmetry, there is a corresponding massless boson

For example, if an SU(N) is spontaneously broken due to an SU(N -1)
subgroup, the symmetry group is effectively reduced.

Consider a system with a global

SU(3) symmetry. If this symmetry is spontaneously broken down to due to
SU(2), we can count the number of Goldstone bosons as follows:

SU(N2 − 1)

Original symmetry = 8(9 - 1)
residual symmetry = 3(4 - 1)
So, therefore broken symmetry will be:- Original - residue = 8 - 3 = 5

SO(5)−→ SO(4)

Original symmetry = 5(5-1)/2 = 10 generators
Residual symmetry = 4(4-1)/2 = 6 generators
Therefore, original - residue = broken.

8 - 3 = 5.

So,
For a SO(5) lie group symmetry there will be 4 goldstone bosons left.
In the case of the electroweak interaction, three of the four would-be Goldstone
bosons are ”eaten” by the W+, W− and Z0 bosons, giving them mass.

The remaining Goldstone boson corresponds to the fluctuation of the phase of
the Higgs field.

Spontaneous symmetry breaking (low energy state) of the SU(2) × U(1) gauge
symmetry associated with the electroweak force generates masses for several
particles, and separates the electromagnetic and weak forces. The W and Z
bosons are the elementary particles that mediate the weak interaction, while
the photon mediates the electromagnetic interaction. At energies much greater
than 100 GeV, all these particles behave in a similar manner. The
Weinberg–Salam theory( see brief history of time) predicts that, at lower
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energies, this symmetry is broken so that the photon and the massive W and Z
bosons emerge.

Now the marble can also oscillate. When it oscillates it is called the higgs
boson which essentially gives mass to some of the gauge bosons. Therefore, we
can say that spontaneous symmetry breaking is augmented by the Higgs boson
to give these particles mass.

The kind of gauge invariance that usually a unified electroweak interaction as
well as QCD follows is known as a non abelian gauge theory, as it involves
non-linear structure constants like fabc

16 Conclusion

We could on and get deep into N =2 Yang mills theory and brush upon primi-
tively on supersymmetry, but that is for another time. To recap , we started off
discussing the lagrangian density and why its invariance is necessary . We get
deep into gauge formalism, touch upon u(1) symmetry and qed lagrangian and
finally finish off with constructing su(3) and weak interaction. We understand,
that we need gauge symmetry and it is realizable at different points, and at
these different points, we give rise to new fields and these new fields tell us what
is going on at these different points. For different gauge fields , the field strength
remains invariant, and from these new connections and different interactions,
we can touch upon unified fields.
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